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SUMMARY

The detection of ambiguous objects, although challenging, is of great importance for any surveillance system
and especially for an Unmanned Aerial Vehicle (UAV), where the measurements are affected by the great
observing distance. Wildfire outbursts and illegal migration are only some of the examples that such a system
should distinguish and report to the appropriate authorities. More specifically, Southern European countries
commonly suffer from those problems due to the mountainous terrain and thick forests that contain. UAVs
like the “Hellenic Civil Unmanned Air Vehicle - HCUAV” project have been designed in order to address
high altitude detection tasks and patrol the borders and woodlands for any ambiguous activity. In this
paper, a moment-based blob detection approach is proposed that utilizes the thermal footprint obtained
from single infrared (IR) images and distinguishes human or fire sized and shaped figures. Our method
is specifically designed so as to be appropriately integrated into hardware acceleration devices, such as
GPGPUs and FPGAs, and takes full advantage of their respective parallelization capabilities succeeding
real-time performances and energy efficiency. The timing evaluation of the proposed hardware accelerated
algorithm’s adaptations shows an achieved speedup of up to 7 times, as compared to a highly optimized
CPU-only based version.
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1. INTRODUCTION

The use of images and video obtained by Unmanned Aerial Vehicles (UAVs) patrolling harsh or
difficult to access territories, such as steep mountains or dense forests, can be beneficial for early fire
detection, illegal immigration prevention and search and rescue operations. With the technological
advancements in the field of UAVs, it is possible for the corresponding agencies of countries that
face problems such as wildfires and illegal immigration to obtain and operate a small number of
UAVs assigned to patrolling areas of interest. In this paper, we present algorithms developed to
automate human and fire detection using images acquired by a UAV equipped with full-color and
thermal cameras.

In the existing bibliography, human detection from aerial imagery either makes use of tracking
moving objects [1, 2] or depends on detecting the distinct shape of the human figure [3, 4]. In [1]
the detection of moving humans is based on dense optical flow, using the deviation of all pixels
from the anticipated geometry between succeeding images to differentiate between background and
moving objects, while tracking-by-detection [2] is used to increase the probability of a positive
human detection.
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(a) (b)

Figure 1. The Hellenic Civil Unmanned Aerial Vehicle. a) Conceptual operation; b) Developed prototype.

The Head-Shoulders-Torso (HST) model [3] is used in order to determine whether a detected
blob is actually a human. However, in order for this model to be effective, the images depicting
the possible targets have to be at an angle, so that the human anatomy is visible. Cascaded Haar
classifiers [4] are used to detect humans in static images from UAVs taken at a 45 degree angle to
the ground plane, making use of the distinct human figure. Finally, the characteristics of the shadow
cast by objects can be used in order to determine if it corresponds to a human [5].

Moreover, infrared images can be used to enhance the performance of the algorithms, especially
if the background is homogeneous in terms of temperature variation. In [4] infrared images are used
in combination with full-color ones in order to cross-reference results and eliminate false positives.
Infrared images are used in [6], in order to detect pedestrians in non-aerial images. In [7] regions of
interest are extracted from infrared photographs and then pedestrian detection is performed in the
corresponding region of a full-color image of the same area.

Fire detection on color images is based on chromatic features, since the distinct orange color of
the flame is easy to detect. Using color data extracted from images of fire [8, 9, 10, 11], as well as
the shape of the flames, highly efficient fire detection can be achieved. Additionally, detection of the
smoke plume created by a fire can help the early detection and prevent its spread [12]. Moreover,
using infrared images to detect fires can be very effective, due to the high temperature of the flames
[13, 14]. Since in this work we are addressing the problem of fire detection in cases of middle
altitude flights, where the weather or environmental conditions (e.g. clouds or dense vegetation of
high trees) may affect the color optical information, only the infrared spectrum is utilized.

This paper as an extension of [15] includes three different implementations of the proposed
algorithm and is structured as follows. Section 2 is dedicated to the HCUAV project, the UAV
system for which our method was developed. In Section 3 some of the required notions for the rest
of the presented work are explained. Our whole detection approach is described in Section 4, while
Section 5 contains the implementation and parallelization techniques applied for the three optimized
versions of the presented algorithm. Section 6 presents our experimental results and finally, Section
7 draws our conclusion.

2. HCUAV PROJECT

Since UAVs are mainly characterized by operational altitude and flight endurance, there are three
main classes in which can be categorized: 1) Micro Aerial Vehicles (MAVs), 2) Medium Altitude,
Long Endurance (MALE) and 3) High Altitude, Long Endurance (HALE) vehicles. Between them,
MAVs present limited (low altitudes (up to 350 m) and battery capacities (5-30 min)) but promising
performance. They have been successfully utilized in real life missions supporting rescue operations
and damage analysis. On the other hand, MALE vehicles are characterized by significantly higher
altitudes (up to 9000 m) and many hours of flight operation covering extended regions and having
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(a) (b)

Figure 2. The HCUAV electro-optical airborne sensor system. a) Infrared and day camera gimbal with its
electronics compartment; b) Actual test flight.

a key role in defense, security and surveillance operations. Finally, the class of HALE vehicles is
characterized by the largest and most sophisticated UAVs, which are capable of flying at heights up
to 20.000 m or more and operational duration that is measured in tens of hours, while they can be
used for gathering data at global scale.

The HCUAV project [16] aims to merge the best characteristics of MAVs and HALE vehicles
for developing a cost efficient MALE UAV with operational flight altitude up to 2000 m, which is
going to combine comparatively low-cost payload and sophisticated image processing algorithms
for accurate remote sensing and surveillance [17]. The main objective of this project is fire detection
in forested areas and border control thus, its characteristics such as flight duration, covered region,
and flight velocities were adapted correspondingly. Regarding the layout, a propeller-driven pusher
configuration with a boom-mounted inverted V tail carrying an internal combustion engine as shown
in Fig. 1 has been selected. In contrast with HALE vehicles where the operational altitude remains
static, the corresponding altitude of HCUAV turns out to be a 3D mission path considering the
mountainous nature of the regions of surveillance in conjunction with the algorithm’s requirements.

For the electro-optical sensor system the CONTROP TR-STAMP gimbal was used which entails
a three axis gyro stabilized system along with an infrared and a day camera as shown in Fig. 2.
The control of the gimbal was achieved through the VISCA protocol based on the RS232 serial
communication. The analog video output of the sensor gimbal was encoded using the AXIS Q7424-
R video encoder.

3. PREREQUISITES

3.1. Ground Sample Distance (GSD)

The ground sample distance (GSD) is defined as the distance between the projections to the ground
of two consecutive pixels centers and is directly related to the camera’s spatial resolution. Let
us assume a camera with a sensor resolution M ×N . Let us further assume that the character
L represents either the vertical (M ) or the horizontal (N ) sensor resolution. Then the GSD that
corresponds between the pixels x− 1 and x is represented as GSD(x), x ∈ [1, L− 1] (expressed in
centimeters) and is given by Eq. (1).

GSD(x) = H · [T (x)− T (x− 1)] · 100 (1)

T (x) = tan

(
FOV

2
· 2x− L

L
+ β

)
(2)
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where FOV (in radians) is the field of view (horizontal or vertical), H (in meters) is the height of
the camera above the average ground elevation and β (in radians) is the angle between the camera’s
principal axis and the plumb line (i.e. the angle of tilt).

In the general case, a human area could be represented by a blob with αl ·(
Human Height (cm)

GSD( x
2 )

× Human Width (cm)
GSD( x

2 )

)
pixels and when the camera has vertical orientation, this

area could be represented by a blob of αs ·
(

Human Width (cm)
GSD( x

2 )

)2
pixels, where αl and αs are free

parameters that depend on the problem. Although that this is only a gross approximation, it could
efficiently serve as a size threshold for discarding small and large objects.

3.2. Chebyshev Image Moments

Every M ×N image can be perceived as a piecewise continuous function f , which can be
approximated using polynomial-based spectral expansions, as it can be seen in the following eq.
(3):

f(j, i) ≈
N−1∑
k=0

M−1∑
t=0

Kernelkt(yj , xi) · Ckt (3)

where Kernelkt(yj , xi)· is a separable basis function and {Ckt| k ∈ [0, N − 1] , t ∈ [0, M − 1]}
is the set of the expansion coefficients. In this work the continuous Chebyshev poly-
nomials [18] of the first kind, given by eq. (4), are used as the basis orthogonal set
{Pk(x)|x ∈ [−1, 1], k ∈ [0, max(N, M)− 1]} in order to calculate the expansion coefficients
{Ckt} (or else the Chebyshev image moments of order (k, t)) .

Ckt =W k ·Wt ·
N−1∑
i=0

M−1∑
j=0

Pk(xi) · Pt(yj) · f(j, i) (4)

where W k and Wt are weighting factors, while

Pk+1(x) = 2xPk(x)− Pk−1(x)

P0(x) = 1 , P1(x) = x

and

W k =

{
1
N k = 0
2
N 1 ≤ k < N

, Wt =

{
1
M t = 0
2
M 1 ≤ t < N

xi = cos

(
π
i+ 1

2

N

)
, i = 0, 1, ..., N − 1

yj = cos

(
π
j + 1

2

M

)
, j = 0, 1, ...,M − 1

Calculating the Chebyshev image moments Ckt (i.e. the expansion coefficients of the Chebyshev
spectral expansion of the image f ) is a computationally demanding process. Except the direct way,
there is a number of different implementations of eq. (4) that could be selected in order to achieve a
fast computation scheme. The simpler and most straightforward implementation in order to reduce
the number of multiplications is expressed by the formula:

Ckt =W k ·Wt ·
N−1∑
i=0

Pk(xi)

M−1∑
j=0

Pt(yj) · f(j, i) (5)

which in fact exploits the separable nature of the basis function and it is very probably the most
frequently implemented form. An alternative implementation could make use of image block or
slice representation [19], which, taking into consideration the distribution of pixel intensities, could
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(a) (b) (c)

Figure 3. The resulted enhanced images from (b): the wavelet-based method used in [20] and (c): the
proposed moment-based method. The original image is illustrated in (a).

achieve even faster calculation speeds. In this work, we select to implement a matrix-based version
of eq. (5), which is expressed in eq. (6):

C =W. ∗
[
A · (B · f)T

]
(6)

where ( )T represents the transpose of a matrix, .∗ represents the element-wise matrix multiplication,
A is a n×N matrix, the elements of which are given by Aki = Pk(xi) (where 0 ≤ n, i < N and
0 ≤ k < n), B is a m×M matrix, the elements of which are given by Btj = Pt(yj) (where 0 ≤
m, j < N and 0 ≤ t < m),W is a n×mmatrix the elements of which are given byWkt =Wk ·Wt,
f is the image matrix with dimensions M ×N and C = [Ckt] is the resulting n×m matrix of the
image moments. This form has been selected due to its ease of extension into GPGPU programming.
In the same context, the image reconstruction of eq. (3) can be represented in matrix form as

f̂ = (C ·B)
T ·A (7)

3.3. Moment-Based Image Contrast Enhancement

In the previous subsection, the calculation of the Chebyshev image moments has been presented.
In this one, an image contrast enhancement technique, which is based on Chebyshev moments,
is going to be explained. The used method has been based on a similar methodology [20], where
wavelets are used instead of moments. Wavelet-based methods have proven effectiveness in
contrast enhancement. However, their hierarchical structure (levels of coefficients that correspond
to different frequency bands; the maximum number of levels depends on how many times an
image can be downscaled by a factor of 0.5) does not allow much freedom on properly selecting
low-frequency components. Based on this fact, a moment-based perspective, which presents similar
results with the wavelet-based one and leads to a more flexible scheme, is adopted. Fig. 3 presents
indicative outputs of the wavelet- and moment-based methods for contrast enhancement. The steps
of this method are presented below:

Step 1: Initially, the Chebyshev moments of the M ×N image f are calculated up to order
(n, m) using eq. (6), resulting in a n×m matrix C.
Step 2: The second step is to make zero the low order moments which represent low-
frequency information. All the moments up to order (On, Om) are changed to zero, that is
Ckt = 0 ∀ 0 ≤ k ≤ On and 0 ≤ t ≤ Om.
Step 3: A new M ×N image f̂ is reconstructed by using the inverse transform illustrated in eq. (7)
and is normalized to range [0, 255].
Step 4: The reconstructed image matrix f̂ is used in order to define a new M ×N matrix as a
mask. This matrix is given by eq. (8) and (9).

maskji =
Gji

max(Gji)
(8)

Gji = eα·f̂(j,i) (9)

Copyright c© 2016 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2016)
Prepared using cpeauth.cls DOI: 10.1002/cpe



6 A. AMANATIADIS, ET AL.

Figure 4. Human and Fire Detection Algorithm.

Algorithm 1 Steps of Detection Algorithm.
Require: I: Initial Image
Require: Th: Threshold Value
Require: GSD: Ground Sample Distance

1: Igb ← Gaussian Blur(I)
2: Ice ←Moments Based Contrast Enhancement(Igb)
3: Ith ← Thresholding(Ice, Th)
4: Isf ← Size Filter(Ith, GSD))
5: Idr ← Detect Regions of Interest(Isf )

return Idr

where α is an application oriented parameter and it should be selected empirically. For the purposes
of this work, the value α = 0.02 is used.
Step 5: Finally, the enhanced image fE is calculated according to eq. (10).

fE(j, i) = f(j, i) ·maskji (10)

4. PROPOSED SURVEILLANCE DETECTION TECHNIQUE

This section aims to present the algorithm which is used for human and fire detection. The algorithm
is composed of five main steps as it can be seen in Fig. 4 and Alg. (1), while its output is illustrated
in Fig. 5. Those steps are explained as follows:

Step 1: The first step is the Gaussian blurring of the input thermal image in order to produce
smoother blob borders.
Step 2: The second step applies contrast enhancement, which is based on the Chebyshev image
moments, to the filtered image. This step results in an image in which objects with high temperature
are highlighted.
Step 3: The third step applies a threshold (Th) to the intensities of the enhanced image and
produces a binary output where all the pixels intensities bellow this threshold are set to zero, while
the rest ones are set to one.
Step 4: In the fourth step a size filter, which takes into account the Ground Sample Distance (GSD),
is applied in order to estimate the larger and the smaller object size for keeping only human or
fire-sized objects.
Step 5: Finally, in the last step human or fire motion characteristics are further considered for
increasing the possibility of detecting specific regions of interest, as to be further explained in the
following subsection.

4.1. Human and Fire Detection

The human detection process using images taken by a UAV at heights up to two kilometers is a
challenging task mainly due to human-shape restrictions that are based on the target’s projection
to image plane in conjunction with size and payload restrictions. Let us assume a camera sensor
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(a) (b)

Figure 5. Result of human detection algorithm.
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Figure 6. Human Detection (D, yellow), Recognition (R, cyan) and Identification (I, blue) for a range of
FOV and flight heights according to Johnson’s criteria. In the red (CDH) area, no human-sized object can be
detected. The assumed camera has resolution 480× 720, the tilt angle is β = 0o and the GSD is calculated

using eq. (1) for the camera’s principal point.

with pixel pitch 3.5µm, resolution 480× 720 pixels and focal length F = 28mm, that is on-
board in the UAV at height H = 1200 meters above the average ground elevation, the field of
view of which is calculated by FOV = 2 · tan−1

(
d

2·F
)
= 2 · tan−1

(
3.5
1000 ·720
2·28

)
≈ 5.15o, where d

is the horizontal or vertical sensor size. Assuming that the camera’s Principal Point (PP ) is located
at the image coordinates (240, 360) and that the tilt angle is β = 00 (vertical orientation), the
ground sample distance for its principal point is approximately GSDpp ≈ 15 cm according to eq.
(1), with L = 720 and x = 360. Considering that an average human size according to Johnson’s
criteria [21] is 180cm× 50cm and taking into account the vertical camera’s orientation, a human is

projected to the image plane as a blob that consists of approximately
(

human width (cm)
GSDpp

)2
=
(
50
15

)2 ≈
11 pixels. Additionally, taking into consideration Johnson’s criteria which assume that for detection,
recognition and identification 2, 8 and 16 pixels/meter are required, respectively. The described
predefined payload is capable of detecting human-sized objects on the basis of their emitted thermal
radiation. This example makes clear that the human shape characteristics cannot be used, at least
directly, for detecting and recognizing human figures. Figure (6) presents some combinations of
FOV and H , where the detection, recognition or identification of a human-sized object may or may
not be achieved for the previously mentioned camera. This is the reason why the proposed algorithm
has been designed mainly as a blob detector applied to thermal images and is kept simple enough in
order to achieve high frame rates when implemented on a GPGPU or FPGA unit.

From high altitudes, humans and other human-sized objects, like big animals, are projected as
hot spots or small bright blobs (small-sized objects with obscure shape characteristics) on the image
plane, where their thermal footprint differs from the background. Although there is a difference
between the detected temperature that corresponds to fire areas and that of human objects (which
in fact is taken into consideration when the thresholding procedure takes place in order to separate
hot objects from their surrounding area), the corresponding blob’s size is an additional important
feature for separating human- from fire-sized objects, since in forested areas the later cover tens
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8 A. AMANATIADIS, ET AL.

of m2. For the case of human detection, the size thresholds have previously been mentioned
(see subsection 3.1), for the case of fire detection the size threshold uses a predefined area as
the smaller detected region of interest. This area can be calculated in pixels using the formula
αf ·

(
area length (cm)

GSDpp

)
·
(

area width (cm)
GSDpp

)
, where af is a free parameter that is dependent on the problem.

5. ALGORITHM’S IMPLEMENTATIONS

One of the main contributions of this work is the capability of the proposed algorithm to be
implemented on hardware accelerators. In this section, two parallel versions of the technique are
described, together with a reference point of a serialized one.

5.1. CPU-only Implementation

In order to create a valid reference point for comparing the proposed algorithm’s accelerated
implementations, a CPU-only based version was developed. More specifically, all the steps
described in Section 4 were computed, making use of every available CPU core (one thread
per core) of the given device and utilizing several highly optimized programming libraries . We
made use of the Boost library [22] in order to create a multi-threaded architecture. In addition,
the Eigen [23] and OpenCV [24] libraries were utilized, undertaking every linear algebra and
computer vision functionality respectively. Using this CPU-only version, we were able to profile the
proposed methodology, identify its bottlenecks and properly address them by the assessed hardware
accelerators (GPU and FPGA).

5.2. CPU and GPU Implementation

As it has already been mentioned, the overall algorithm’s architecture have been designed in order
to be efficiently implemented on a GPGPU. In this work, the general purpose parallel computing
architecture of CUDA was selected as a means of assigning calculations to the GPU. In general,
the architecture of a GPU complies with the “Single Instruction on Multiple Threads” (SIMT)
model†, which essentially means that each one of the available parallel processing units is restricted
to execute the same instruction on every clock circle. Violating the above rule, causes a serialization
of the individual processing threads and leaves the majority of the available resources unoccupied.
CUDA provides several programming utilities, each of which can assist the efficiency of a given
implementation, with their description available in [25].

The first step of the presented detection approach includes the application of a Gaussian blurring
filter on each given thermal image. In the discretized space of an image, such a blurring can be
achieved by applying a Gaussian convolution kernel, of size 3×3, over the input frame’s pixels.
A straightforward implementation of such a filtering approach is described in [26, 27]. According
to that, the 3×3 kernel is firstly divided into two one-dimensional filters (F1 ∈ R3×1, F2 ∈ R1×3).
Then, the Gaussian blurring can be implemented by recursively applying the convolution operation
between the input image and each individual kernel F1 and F2. The aforementioned approach,
although scales well for a GPGPU-based implementation, involves a lot of redundant and misaligned
memory access (especially in the case of the F1 convolution). Thus, here we adopt a more
efficient technique by taking advantage of the CUDA Shuffle Functions introduced by Kepler GPU
architecture. Using those Functions, the GPU threads are capable of sharing register values as long
as they belong to the same warp. Thus, N individual threads are assigned for processing in parallel
each pixel of the image’s i-th row, accessing the corresponding pixel value, applying the respective
filter kernel weight and passing that product to their neighboring threads. This way, the application
of the horizontal filtering component is achieved without employing any of the higher latency global
or shared GPU memory. The same procedure is then executed for the next image row (i+ 1) by the

†The extension of the more traditional “Single Instruction on Multiple Data” (SIMD) model.
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REAL-TIME SURVEILLANCE DETECTION SYSTEM 9

same threads, only this time, the corresponding filtered image values from row i are still stored in
the used registers, liberating once more our implementation from the requirement of accessing the
slower types of memory. This technique is utilized here for addressing the Gaussian blur filtering,
though, in fact, it can also be extended to any kind of 2-dimensional kernel applications.

In order to enhance the blurred image’s contrast, the second step of our model makes use of
Chebyshev moments. Using eq. (6), the calculation of the image moments C is straightforward
since it consists of simple linear algebraic operations. Given a specified image resolution, the terms
A and B can be considered as constants. Thus, we choose to pre-calculate and store in the GPU’s
texture memory the terms W , A and BT , meaning that the operations executed on-line for every
input image are downgraded into two matrix multiplications, one transposition and one element-
wise multiplication (C =W. ∗

[
A · fT ·BT

]
). Note that the on-line image transposition can be

efficiently implemented using [28]. The basic idea behind this approach is based on simple read
and write operations with each parallel thread undertaking the transposition of multiple matrix
elements. This way, the workload of the thread management unit is reduced, while still ensuring
a full device occupancy. Initially, the given matrix is separated into tiles of equal size, each of
which is assigned to an individual GPU block of threads. In addition, each of those blocks retains
a two-dimensional chuck of shared memory, which refers to a GPU memory type of low latency.
Thus, every thread is responsible for copying one element from every tile into the shared memory
and subsequently re-assigning it to its appropriate transposed location of the resulting matrix. This
two-step approach, although seems to increase the required computational steps, is adopted in order
to avoid the high-latency memory accesses of misaligned data. After the required transpositions,
the terms corresponding to moments of up to (On, Om) order are zeroed using one thread for
each respective value. This zeroing operation is not ideal, since the accessing memory alignment
restrictions are not absolutely met, though it is still much faster than a serialized version of the
procedure.

Subsequently, we need to reconstruct image f̂ . Equation (3) may seem really costly in terms
of computations but it can take great advantage of a parallel implementation. Since each value of
matrix Ckt needs to be accessed multiple times, we choose to bind a texture memory over the buffer
containing Ckt. This texture is binded only once on the beginning of our on-line application and
provides lower latency to the read operations. Then, the parallel reduction algorithm is applied, in
order to achieve the required 2-dimensional summation, through the means of CUB library [29].
CUB is a highly optimized CUDA-based library that provides several functionalities, while it is
tuned for multiple versions of GPU architectures. Thus, the reduction is achieved by a combination
of the CUDA Shuffle Functions, Grid Stride Loops and Atomic operations, all of them specifically
optimized so as to achieve the maximum possible throughput. In addition, a parallel version of
eq. (7) was developed, making use of the same transposition technique applied for eq. (6) and
described above, in order to assess every possible optimization scenario. Through our experiments,
we concluded that the first approach achieved a higher speedup and thus adopted by our method.
Finally, during the above calculations, we keep track of the maximum and minimum values achieved
and we normalize the aforementioned products in the range of [0, 255].

With the reconstructed image f̂ in hand, we now proceed to the calculation and application of
the enhancement mask. Looking at eq. (8) it is clear that the maximum value of Gji needs to be
computed. Since the maximum value of f̂ (f̂max) is already obtained by our previous steps, we make
use of eq. (9) and we calculatemax(Gji) = eα·f̂max . Finally, the thresholded image fth is calculated
by the same kernel, through the concatenation of eq. (8) to (10) and using M ×N threads, as:

fE(j, i) = f(j, i) · eα·f̂(j,i)

max(Gji)

fth(j, i) =

{
1 fE(j, i) > Th

0 fE(j, i) ≤ Th

(11)

The rest of the proposed method’s steps require the formulation of pixel groups with values equal
to 1 in order to obtain the human or fire-sized objects. This procedure does not comply with the
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Figure 7. Blob size comparison hardware implementation: a) basic compare-swap element b) pipelined MSB
sorting network, where the operator represents the activated compare-swap elements.

parallelization properties of a GPU, since it requires non-neighboring threads to communicate
constantly so as to determine whether their corresponding values fth should be considered as
members of a specific object. Following the implementations described in [30, 31, 32] we adopt
a pipeline scheme and we make use of both available processing units of a given system, e.i. the
CPU and the GPU. More specifically, given a constant image stream, at the same time that the GPU
is executing all the required steps described above for the input image Ik, the CPU is operating on
the previous image Ik−1 and creates the human or fire-sized objects, applies the size filtering and
additionally checks for the requirements presented in Section 4.1. Without this technique, the CPU
would be restricted to remain idle, waiting for the GPU to return the computed results. In this way
though, a more efficient algorithm architecture is provided, allowing all the system’s processing
units to be simultaneously utilized.

5.3. FPGA Implementation

Since memory and computational resources are very limited due to the volume and power
restrictions of the HCUAV, a dedicated hardware for the surveillance detection was also considered
as an alternative option. As a result, an efficient implementation on a Field Programmable Gate
Array (FPGA) is also proposed and realized in a low-cost development board. FPGA-based
computation engines appear to be very attractive for such unmanned aerial detection systems, since
the fundamental image processing steps for such systems, comprise a uniform structure composed
of many finite state machines, thus matching the inherent design layout of FPGA hardware.
Furthermore, tests based on double-precision floating point operations’ (add/multiply) performance
showed that FPGAs are competitive to multicore processors. More specifically, an AMD dual-core
2.8 GHz Opteron processor has a peak of 11.2 Gflop/s and an Intel 3 GHz quad-core Xeon has
a peak of 24 Gflop/s. However, it has been evaluated that theoretically Xilinx Virtex4 LX200 and
Altera Stratix II EP2S180 can perform 15.9 and 25.2 Gflop/s, whereas Xilinx Virtex5 LX330 and
Altera Stratix III EP3SE260 perform 28 and 50.7 Gflop/s, respectively. Finally, as FPGAs can
be completely dedicated to a particular function, in several cases they are more energy efficient
than general-purpose CPUs. Therefore, although each implementation has its particular features,
the merits of surveillance applications on FPGA platforms along with low power consumption,
compactness, and portability, completely justify in many cases such an option [33].

The proposed detection system was designed, compiled and simulated using the software package
Quartus II Programmable Logic Development System of Altera Corporation. The device chosen was
the Cyclone II EP2C45 utilizing the accompanying DSP development board.
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(a) (b)

(c) (d)

Figure 8. The two proposed and evaluated implementations. a) and c) The CPU+GPU parallel
implementation running on the Jetson TX1 Embedded System Developer Kit; b) and d) The FPGA hardware

implementation running on the Cyclone II DSP Development Board.

The proposed architecture was based on a sequence of pipelined stages in order to reduce
computational time [34]. Parallel processing has been employed wherever was possible in order
to further accelerate the process. The video stream constitutes the input data of the system, with the
Gaussian blurring. A line buffer loads and stores each time two lines of the input image in order
to perform the blurring. The filter window block calculates the filter mask area and the process is
performed only once, in the first step of the process. However, the filter window coefficient unit
calculates each time the new filter mask coordinates and the new spatial coverage for the contrast
enhancement. The filter window coefficients unit renews the four coordinates of the filter windows
vertex along the horizontal direction.

In the next step, the source pixel intensity values are imported in parallel into the next unit together
with threshold number for producing the binary image output. The purpose of this unit is to compare
the pixel’s intensity together with the threshold number.

For the subsequent size filtering, a novel sorting method is proposed. Since fires are considered
as an upper threshold bound and humans as a lower threshold bound, a sorting method of
all the detected pixel groups can be applied. Let sa = {sa,k−1, sa,k−2 . . . , sa,1, sa,0} and sb =
{sb,k−1, sb,k−2 . . . , sb,1, sb,0} be the two k-bit non-negative binary values denoting the size of the
detected blob, where sa,j and sb,j denote the j-th bit of sa and sb respectively. A bit-wise analysis
can define the relationship between sa,j and sb,j of sa,j > sb,j if sa,j =‘1’ and sb,j =‘0’ (and vice-
versa) in case that the first (k − j − 1)-th Most-Significant-Bits (MSBs) have the same value. The
proposed implementation performs a recursive compare operation between the same bits of each
sa,j and sb,j values from the MSB to Least-Significant-Bit (LSB). The basic sorting element used is
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Table I. Tested devices’ specifications

Cyclone II DSP
Development Board

Jetson TX1
Development Board

Weight 331 gr 474 gr

Power Consumption 5-60W 5-20W

Clock Frequency 100Mhz
CPU: 1734Mhz / core
GPU: 72Mhz / core

Available Processing Units 68,416 Logic Elements (LEs)
150 Embedded 18× 18multipliers

4 CPU cores
256 CUDA cores

Table II. Average execution time for each one of implemented algorithm’s versions.

Average Time (ms/frame)

CPU-only CPU+GPU FPGA

800x600 1280x1024 800x600 1280x1024 800x600 1280x1024

1) Gaussian Blurring 10.6 22.9 0.2 0.5 0.1 0.3

2) Moments Based
Contrast Enhancement 43.3 109.3 3.1 7.9 6.8 15.8

3) Thresholding 2.8 6.7 0.1 0.3 0.0 0.0

4) Size Filter 7.2 15.4 7.2 15.6 3.2 6.9

5) Regions of
Interest detection 6.5 14.5 6.5 16.6 2.4 5.5

Whole algorithm 70.9 169.2 14.1 32.7 12.5 28.5

a compare-swap unit which compares the two j-th bit-values of sa,j and sb,j and swaps the whole
k-bit inputs [35]. The compare-swap unit is shown in Figure 7(a), where the result of the comparator
is used to control both multiplexers for adjusting the input operands in order to perform the sorting.

The main group and each subgroup, are sorted with respect to the leftmost bit by a sorting
network which repeatedly scans top-down and bottom-up to find ‘1’ and ‘0’, respectively, until
scan indices cross. This sorting network utilizes the compare-swap elements and exploits a high
degree of parallelism. Pipeline registers are added after each compare-swap element as shown in
Figure 7(b), where only two swaps were needed to perform the illustrated sorting.

6. EXPERIMENTAL EVALUATION

For our timing evaluation, we made use of two processing systems: the Jetson TX1 Embedded
System Developer Kit [36] running 64-bit version of Ubuntu 16.04 and the Cyclone II DSP
Development Board. Both of those devices provide high computational capabilities, while still
retaining low power consumption and weight. Table I contains a brief overview of their
specifications. Those characteristics makes them perfect candidates for on-line and on-board
applications of UAVs. Both CPU-only and CPU+GPU implementations are based on C++ and
executed in the Jetson TX1 board, while the FPGA version is based on VHDL and MegaCore
functions tested on the Cyclone II DSP Development Board. The two instances of our running
application, applied on the testing videos, are shown in Fig. 8(a) and Fig. 8(b), respectively.
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The results of our timing experiments for the main processing steps of the presented method
are summarized in Table II. Note that two different input resolutions were tested, e.g. 800×600
and 1280×1024 in order to evaluate our implementations’ scalability. The table contains the
average execution time observed after testing 10000 input frames. As it can be seen, each one
of the parallel versions (CPU+GPU and FPGA) achieve real-time performances justifying the
employed algorithms’ efficiency. It is important also to note that the processing time required
by the GPU to compute steps 1 through 3 in not perceptible by the overall application of the
CPU+GPU version since the respective calculations are pipelined with the CPU’s steps 4 and 5.
The FPGA implementation outperforms almost every step, apart from the Moments Based Contrast
Enhancement, where the CPU+GPU implementation presents the best individual performance.
The effectiveness of the FPGA implementation is mainly due to the full exploitation of the
algorithm’s dataflow through parallelism, pipelining and the used bit-wise operations. The CPU-
GPU implementation presents comparable results, however, the used control flow instructions
presented an overhead in the performance since the different execution paths of the algorithm needed
to be serialized, increasing the total number of executed instructions.

Furthermore, we used the OSU thermal image dataset [37] in order to evaluate the effectiveness of
the detection algorithm. The dataset includes 284 images organized in 10 sequences that correspond
to different weather conditions. We applied the proposed algorithm to the entire dataset by keeping
the same values for its parameters (threshold value, size filter, contrast parameter) for all the
sequences in order to present its robustness to different conditions. It should be noted that we
could further improve the results by adapting the aforementioned parameters specifically for each
sequence. The results show a rate of 92.94% of true positive, 4.31% false positive and 7.06% false
negative detection.

7. CONCLUSIONS

Human or fire-sized object detection from high altitudes, challenging as it is, constitutes a
demanding procedure in terms of computational power. In this work, an efficient pipeline for human
and fire detection was implemented, capable of running in real-time and on-board of a middle
altitude UAV. The whole algorithm was designed and tested having in mind the parallelization
characteristics of a modern GPU and FPGA system, taking advantage of their entire processing
power. Comparative results justify the superiority of the proposed parallel approaches as compared
to the performance of a serialized version, while proving the applicability on real life missions.
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